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Figure 1. Dynamic Scene Reconstruction from Sparse Views. MonoFusion reconstructs dynamic human behaviors, such as playing the
piano or performing CPR, from four equidistant inward-facing static cameras. We visualize the RGB and depth renderings of a 45◦ novel
view between two training views. Training views are shown below for reference.

Abstract

We address the problem of dynamic scene reconstruction
from sparse-view videos. Prior work often requires dense
multi-view captures with hundreds of calibrated cameras
(e.g. Panoptic Studio) - such multi-view setups are pro-
hibitively expensive to build and cannot capture diverse
scenes in-the-wild. In contrast, we aim to reconstruct dy-
namic human behaviors, such as repairing a bike or danc-
ing, from a small set of sparse-view cameras with com-
plete scene coverage (e.g. four equidistant inward-facing
static cameras). We find that dense multi-view reconstruc-
tion methods struggle to adapt to this sparse-view setup due
to limited overlap between viewpoints. To address these
limitations, we carefully align independent monocular re-
constructions of each camera to produce time- and view-
consistent dynamic scene reconstructions. Extensive exper-
iments on PanopticStudio and Ego-Exo4D demonstrate that
our method achieves higher quality reconstructions than
prior art, particularly when rendering novel views.

1. Introduction
Accurately reconstructing dynamic 3D scenes from multi-
view videos is of great interest to the vision community,
with applications in AR/VR [49] and robot manipulation
[26]. Prior work often studies this problem in the context of
dense multi-view videos, which require dedicated capture
studios that are prohibitively expensive to build and are dif-
ficult to scale to diverse scenes in-the-wild. In this paper, we
aim to strike a balance between the ease and informative-
ness of multi-view data collection by reconstructing skilled
human behaviors such as repairing a bike and dancing from
four equidistant inward-facing static cameras.

Problem setup. Despite recent advances in dynamic
scene reconstruction [4, 15–17], current approaches often
require dozens of calibrated cameras [23, 36], are category
specific [61], or struggle to generate multi-view consistent
geometry [34]. We study the problem of reconstructing dy-
namic human behaviors from an in-the-wild capture stu-
dio: a small set of (4) portable cameras with limited overlap
but complete scene coverage. For example, such a capture
mode is common in the large-scale Ego-Exo4D dataset [19].
We argue that sparse-view limited-overlap reconstruction
presents unique challenges not found in dense multi-view
setups and typical “sparse view” captures with large covisi-
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Figure 2. Problem Setup. Our sparse-view setup (middle) strikes
a balance between ill-posed reconstructions from casual monoc-
ular captures [17, 42] and well-constrained reconstructions from
dense multi-view studio captures [23]. Unlike existing “sparse-
view” datasets like DTU [22] and LLFF [37], our setup is more
challenging because input views are 90◦ apart with limited cross-
view correspondences.

blity (Fig. 2). For dense multi-view captures, it is often suf-
ficient to rely solely on geometric and photometric cues for
reconstruction, often making use of classic techniques from
(non-rigid) structure from motion [12]. As a result, these
methods fail in sparse-view settings with limited cross-view
correspondences.

Key insights. We find that initializing sparse-view recon-
structions with monocular geometry estimators like MoGe
[55] produces higher quality results. However, naively
merging independent monocular geometry estimates often
yields inconsistent geometry across views (e.g. duplicate
structures), resulting in local minima during 3D optimiza-
tion. Instead, we carefully align independent monocular re-
constructions to a global reference frame to ensure spatio-
temporal consistency. Furthermore, many of the challenges
in inferring view-consistent and time-consistent depth be-
come dramatically simplified when working with fixed cam-
eras with known poses (inherent to the in-the-wild capture
setup that we target). For example, temporal consistent
background geometry can be enforced by simply averaging
predictions over time.

Contributions. We present three major contributions.
• We highlight the challenge of reconstructing skilled hu-

man behaviors in dynamic environments from sparse-
view cameras in-the-wild.

• We demonstrate that monocular reconstruction methods
can be extended to the sparse-view setting by carefully
incorporating monocular depth and foundational priors.

• We extensively ablate our design choices and show that
we achieve state-of-the-art performance on PanopticStu-
dio and challenging sequences from Ego-Exo4D.

2. Related Work
Dynamics scene reconstruction. Dynamic scene recon-
struction [4] has received significant interest in recent years.
While classical work [9, 39] often relies on RGB-D sen-
sors, or strong domain knowledge [2, 7], recent approaches

[33, 34] based on neural radiance fields [38] have pro-
gressed towards reconstructing dynamic scenes in-the-wild
from RGB video alone. However, such methods are com-
putationally heavy, can only reconstruct short video clips
with limited dynamic movement, and struggle with extreme
novel view synthesis. Recently, 3D Gaussian Splatting
[25, 36] has accelerated radiance field training and render-
ing via an efficient rasterization process. Follow-up works
[35, 58, 65] repurpose 3DGS to reconstruct dynamic scenes,
often by optimizing a fixed set of Gaussians in canonical
space and modeling their motion with deformation fields.
However, as Gao et al. [17] points out, such methods of-
ten struggle to reconstruct realistic videos. Many works
address this shortcoming by relying on 2D point tracking
priors [54], fusing Gaussians from many timesteps [30],
modeling isotropic Gaussians [50], or exploiting domain
knowledge such as human body priors [31, 52]. How-
ever, these approaches study the reconstruction problem in
the monocular setting. As 4D reconstruction from a single
viewpoint is under-constrained, practical robotics setups for
manipulation [27] and hand-object interaction [11, 29, 53]
adopt camera rigs where a sparse set of cameras capture the
scene of interest. Similarly, datasets like Ego-Exo4D [19],
DROID [27] and H2O [29] explore sparse-view capture for
dynamic scenes in-the-wild.

Novel-view synthesis from sparse views. Both NeRF
and 3D Gaussian Splatting require dense input view cov-
erage, which hinders their real-world applicability. Recent
works aim to reduce the number of required input views
by adding additional supervision and regularization, such
as depth [8, 40] or semantics [21, 44, 66]. FSGS [70] builds
on Gaussian splatting by producing faithful static geome-
try from as few as 3 views by unpooling existing Gaussians
and adopting extra depth supervision. GaussianObject [60],
on the other hand, adds noise to Gaussian attributes and re-
lies on a pre-trained ControlNet [68] to repair low-quality
rendered images. Other works such as MVSplat [5] build a
cost volume representation and predict Gaussian attributes
in a feed-forward manner. However, they only show suc-
cess in novel view synthesis with small deviations from the
nearest training view. For methods that rely on learned pri-
ors, high-quality novel view synthesis is often limited to im-
ages within the training distribution. Such methods cannot
handle diverse real-world geometry. Diffusion-based recon-
struction methods [18, 59] try to generate additional views
consistent with the sparse input views, but often produce ar-
tifacts. In our case, four sparse view cameras are separated
around 90◦ apart, posing unique challenges.

Feed-forward geometry estimation. Learning-based
methods, such as monocular depth networks, are able
to reconstruct 3D objects and scenes by learning strong
priors from training data. While early works [10, 13]
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Figure 3. Approach. Given sparse-view video sequences of a scene (left), we aim to optimize a 3D gaussian representation over time.
We begin by running DUSt3R [56], a static multi-view reconstruction method, on the sparse views of a given reference timestamp. This
generates a global reference frame that connects all views. Next, we use MoGe [55] to independently predict depth maps for each camera.
Since these depth predictions are only defined up to an affine transformation, we must estimate a scale and shift for each predicted depth
map across all views and time instants. To achieve this, we leverage the fact that background pixels remain static over time. Specifically,
for each time instant and each view, we align the background regions of each camera’s depth map to the global reference frame by adjusting
the scale and shift parameters accordingly (middle, top). This process requires a foreground-background mask for all input videos (which
can be obtained using off-the-shelf tools like SAM [47]). To reduce occlusions and noisy depth predictions, we concatenate all aligned
background depth points, and average corresponding background points (where correspondence across time is trivially given by the 2D
pixel index of the unprojected pointmap) across time. Lastly, we find that motion bases constructed from feature-clustering form a more
geometrically consistent set of bases (middle, bottom), than those initialized by noisy 3D tracks [54]. Our optimization yields a 4D scene
representation from which we can rasterize RGB frames, depth maps, a foreground silhoutte, and object features from novel views (right).

focus on in-domain depth estimation, recent works build
foundational depth models by scaling up the training data
[45, 46, 55, 63, 64], resolving the metric ambiguity from
various camera models [20, 43, 57], or relying on priors
such as Stable Diffusion [14, 24, 48]. Unfortunately,
monocular depth networks are not scale or view consistent,
and often require extensive alignment against ground-truth
to produce meaningful metric outputs. To address these
shortcomings, DUSt3R [56] and MonST3R [67] propose
the task of point map estimation, which aims to recover
scene geometry as well as camera intrinsics and extrinsics
given a pair of input images. These methods unify single-
view and multi-view geometry estimation, and enable
consistent depth estimation across either time or space.

3. Towards Sparse-View 4D Reconstruction

Given sparse-view (i.e. 3 – 4) videos from stationary cam-
eras as input, our method recovers the geometry and motion
of a dynamic 3D scene. We model the scene as a set of
canonical 3D Gaussians (Sec. 3.1), which translate and ro-
tate via a linear combination of motion bases. We initialize
consistent scene geometry by carefully aligning multi-view
geometry predictions (Sec. 3.2), and initialize motion tra-
jectories by clustering per-point 3D semantic features dis-
tilled from 2D foundation models (Sec. 3.3). We formulate
a joint optimization which simultaneously recovers geome-
try and motion (Sec. 3.4). Fig. 3 provides a summary of

our method.

3.1. 3D Gaussian Scene Representation

We represent the geometry and appearance of dynamic 3D
scenes using 3D Gaussian Splatting [25], due to its efficient
optimization and rendering. Each Gaussian in the canon-
ical frame t0 is parameterized by (x0,R0, s, α, c), where
x0 ∈ R3 is the position of the Gaussian in canonical frame,
R0 ∈ SO(3) is the orientation, s ∈ R3 is the scale, α ∈ R
is the opacity, and c ∈ R3 is the color. The position and ori-
entation are time-dependent, while the scale, opacity, and
color are persistent quantities shared over time. We addi-
tionally assign a semantic feature f ∈ RN to each Gaus-
sian (Sec. 3.3), where N is an arbitrary number repre-
senting the embedding dimension of the feature. Empir-
ically, we find that fixing the color and opacity of Gaus-
sians results in a better performance. In summary, for the
i-th 3D Gaussian, the optimizable attributes are given by
Θ(i) = {x(i)

0 ,q
(i)
0 , s(i), f (i)}. Following [69], the optimized

Gaussians are rendered from a given camera into an RGB
image and a feature map using a tile-based rasterization pro-
cedure.

3.2. Space-Time Consistent Depth Initialization

Similar to recent methods [51, 54], we rely on data-driven
monocular depth priors to initialize the position and appear-
ance of 3D Gaussians over time. Given the success of ini-



tializing 3DGS with monocular depth estimates in single-
view settings [54], one might think to naturally extend this
to multi-view settings by repeating monocular depth ini-
tialization for each view. However, this naive initialization
yields conflicting geometry signals, as monocular depth es-
timators commonly predict up to an unknown scale and shift
factor. Thus, the unprojected monocular depths from sep-
arate views are often inconsistent, resulting in duplicated
object parts.

Multi-view pointmap prediction. DUSt3R [56] predicts
multi-view consistent pointmaps across K input images
by first performing pairwise pointmap inference, followed
by a global 3D optimization that searches for per-image
pointmaps and pairwise similarity transforms (rotation,
translation, and scale) that best aligns all pointmaps with
each other.

We run DUST3R on the multiview images at time t, but
constrain the global optimization to be consistent with the
K known stationary camera extrinsics {Pk} and intrinsics
{Kk}. This produces per-image global pointmaps {χt

k} in
metric coordinates. One can then compute a depth map by
simply projecting each pointmap back to each image with
the known cameras

dtk(u, v)
[
u v 1

]T
= KkPkχ

t
k(u, v) (1)

This produces metric-scale multi-view consistent depth
maps dtk(u, v). However, such depth maps will not be con-
sistent over time.

Spatio-temporal alignment of monocular depth with
multi-view consistent pointmaps. In fact, even beyond
temporally inconsistency, such multiview predictors tend to
underperform on humans since they are trained on multi-
view data where dynamic humans are treated as outliers.
Instead, we find monocular depth estimators such as MoGe
[55] to be far more accurate, but such predictions are not
metric (since they are accurate only up to an affine trans-
formation) and are not guaranteed to be consistent across
views or times. Instead, our strategy is to use the multi-
view depth maps from DUST3R as a metric target to align
monocular depth predictions, which we write as mt

k(u, v).
Specifically, we search for scale and shift factors atk and btk
that minimize the following error:

argmin
{at

k,b
t
k}

T∑
t=1

K∑
k=1

∑
u,v∈BGt

k

∥∥(atkmt
k(u, v) + btk)− dtk(u, v)

∥∥2
(2)

where BGt
k refers to a pixelwise background mask for

camera k at frame t. The above uses metric background
points as a target for aligning all monodepth predictions.
The above optimization can be solved quite efficiently since
each time t and view k can be optimized independently with

a simple least-squares solver (implying our approach will
easily scale to long videos). However, the above optimiza-
tion will still produce scale factors that are not temporally
consistent since the targets are temporally inconsistent as
well. But we can exploit the constraint that background
points should be static across time for stationary cameras.
To do so, we replace dtk(u, v) with a static target dk(u, v)
obtained by averaging depth maps over time or selecting a
canonical reference timestamp. The final set of scaled time-
and view-consistent depthmaps are then unprojected back to
3D pointmaps. Note that this tends to produce accurate pre-
dictions for static background points, but the dynamic fore-
ground may remain noisy because they cannot be naively
denoised by simple temporal averaging. Rather, we rely on
motion-based 3DGS optimization to enforce smoothness of
the foreground, described next.

3.3. Grouping-based Motion Initialization
Beyond initializing time- and view-consistent geometry in
the canonical frame, we also aim to initialize reasonable
estimates of the scene motion. We model a dynamic 3D
scene as a set of N canonical 3D Gaussians, along with
time-varying rigid transformations T0→t = [R0→tt0→t] ∈
SE(3) that warp from canonical space to time t:

xt = R0→tx0 + t0→t Rt = R0→tR0 (3)

Motion bases. Similar to Shape of Motion [54], we make
the observation that in most dynamic scenes, the underlying
3D motion is often low-dimensional, and composed of sim-
pler units of rigid motion. For example, the forearms tend to
move together as one rigid unit, despite being composed of
thousands of distinct 3D Gaussians. Rather than storing in-
dependent 3D motion trajectories for each 3D Gaussian (i),
we define a set of B learnable basis trajectories {T(i,b)

0→t}Bb=1.
The time-varying rigid transforms are written as a weighted
combination of basis trajectories, using fixed per-point basis
coefficients {w(i,b)}Bb=1:

T
(i)
0→t =

B∑
b=1

w(i,b)T
(i,b)
0→t (4)

Motion bases via feature clustering. Unlike Shape of
Motion which initializes motion bases by clustering 3D
tracks, our key insight is that semantically grouping simi-
lar scene parts together can help regularize dynamic scene
motion, without ever initializing trajectories from noisy 3D
track predictions. Inspired by the success of robust and uni-
versal feature descriptors [41], we obtain pixel-level fea-
tures for each input image by evaluating DINOv2 on an im-
age pyramid. We average features across pyramid levels
and reduce the dimension to 32 via PCA [1]. We choose the



small DINOv2 model with registers, as it produces fewer
peaky feature artifacts [6].

Given the consistent pixel-aligned pointmaps χ(time+view)
t,k ,

we associate each pointmap with the 32-dim feature map
ft,k computed from the corresponding image. We perform
k-means clustering on per-point features f to produce b ini-
tial clusters of 3D points. After initializing 3D Gaussians
from pointmaps, we set the motion basis weight w(i,b) to
be the L2 distance between the cluster center and 3D Gaus-
sian center. We initialize the basis trajectories T

(b)
0→t to be

identity, and optimize them via differentiable rendering.

3.4. Optimization
As observed in prior work [16, 32], using photometric su-
pervision alone is insufficient to avoid bad local minima in
a sparse-view setting. Our final optimization procedure is a
combination of photometric losses, data-driven priors, and
regularizations on the learned geometry and motions.

During each training step, we sample a random timestep
t and camera k. We render the image Ît,k, mask M̂t,k, fea-
tures F̂t,k, and depth D̂t,k. We compute reconstruction loss
by comparing to off-the-shelf estimates:

Lrecon =
∥∥∥Î− I

∥∥∥
1
+ λm

∥∥∥M̂−M
∥∥∥
1
+ λf

∥∥∥F̂− F
∥∥∥
1
+ λd

∥∥∥D̂−D
∥∥∥
1

(5)
We additionally enforce a rigidity loss between ran-

domly sampled dynamic Gaussians and their k nearest
neighbors. Let X̂t denote the location of a 3D Gaussian
at time t, and let X̂t′ denote its location at time t′. Over
neighboring 3D Gaussians i, we define:

Lrigid =
∑

neighbors i

∥∥∥X̂t − X̂
(i)
t

∥∥∥2
2
−
∥∥∥X̂t′ − X̂

(i)
t′

∥∥∥2
2

(6)

4. Experimental Results
Implementation details. We optimize our representation
with Adam [28]. We use 18k gaussians for the foreground
and 1.2M for the background. We fix the number of SE(3)
motion bases to 28 and obtain these from feature clustering
(Sec. 3.3). For the depth alignment, we use points above
the confidence threshold of 95%. We show results on 7 10-
sec long sequences at 30fps with a resolution of 512 × 288.
Training takes about 30 minutes on a single NVIDIA A6000
GPU. Our rendering speed is about 30fps.

Datasets. We conduct qualitative and numerical evalua-
tion on Panoptic Studio [23] and a subset of Ego-Exo4D
[19] which we call ExoRecon.

Panoptic Studio is a massively multi-view capture sys-
tem which consists of 480 video streams of humans per-
forming skilled activities. Out of these 480 views, we man-
ually select 4 camera views, 90◦ apart to simulate the same
exocentric camera setup as Ego-exo4D (see below). Given

these 4 training view cameras, we find 4 other intermediate
cameras that lie 45◦ apart from the training views and use
these for evaluating novel view synthesis from 45◦ camera
views.

For in-the-wild evaluation of sparse-view reconstruction,
we repurpose Ego-Exo4D [19], which includes sparse-view
videos of skilled human activities. While many Ego-Exo4D
scenarios are out of scope for dynamic reconstruction with
existing methods (due to fine-grained object motion, spec-
ular surfaces, or excessive scene clutter), we find one scene
each from the 6 different scenarios in Ego-Exo4D with con-
siderable object motion: dance, sports, bike repair, cook-
ing, music, healthcare. For each scene, we extract 300
frames of synchronized RGB video streams, captured from
4 different cameras with known parameters. We remove
fisheye distortions from all RGB videos and assume a sim-
ple pinhole camera model after undistortion. We call this
subset ExoRecon, and show results on these sequences.
Please see supplement for more visuals.

Metrics. We follow prior work [36, 62] in evaluating the
perceptual and geometric quality of our reconstructions us-
ing PSNR, SSIM, LPIPS and absolute relative (AbsRel)
error in depth. We compute these metrics on the entire
image, and also on only the foreground region of inter-
est. We additionally evaluate the quality of the dynamic
foreground silhouette by reporting mask IoU, computed as
(M̂&M)/(M̂||M). Similar to prior work [62], our evalu-
ation views are a set of held-out frames, subsampled from
the input videos from 4 exocentric cameras, in both Panop-
tic Studio and ExoRecon.

Note that since the cameras in our setup are station-
ary, above evaluation only analyses the interpolation quality
of different methods. More explicitly, we also benchmark
novel-view synthesis on Panoptic Studio with an evaluation
camera placed 45◦ away from the training view cameras.
Since such a ground-truth evaluation camera is not avail-
able in ExoRecon, we only show qualitative results.

Baselines. We compare our method with prior work
on dynamic scene reconstruction from single or multiple
views. Among methods that operate on monocular videos,
we run Shape of Motion [54] on 8 scenes from Panoptic Stu-
dio following the setup of Dynamic 3D Gaussians [36] and
our curated dataset ExoRecon that covers 6 diverse scenes.
Finally, we consider two multi-view dynamic reconstruc-
tion baselines, Dynamic 3D Gaussians [36], and a naive
multi-view extension of Shape of Motion (MV-SOM). To
construct the latter baseline, we simply concatenate the
Gaussians, motion bases, and optimization objectives as
four separate instances of single-view SOM. We verify that
all baselines reconstruct reasonable training views in the
supplement.



Dataset Method Full Frame Dynamic Only

PSNR ↑ SSIM ↑ LPIPS ↓ AbsRel ↓ PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
SOM [54] 17.86 0.687 0.460 0.491 18.75 0.701 0.236 0.358
Dyn3D-GS [36] 25.37 0.831 0.266 0.207 26.11 0.862 0.129 —Panoptic Studio
MV-SOM [54] 26.28 0.858 0.241 0.331 26.80 0.883 0.161 0.886
MonoFusion 28.01 0.899 0.117 0.149 27.52 0.944 0.022 0.965

SOM [54] 14.73 0.535 0.482 0.843 15.63 0.559 0.450 0.294
Dyn3D-GS [36] 24.28 0.692 0.539 0.612 24.61 0.673 0.384 —ExoRecon
MV-SOM [54] 26.91 0.890 0.138 0.474 27.31 0.919 0.078 0.845
MonoFusion 30.03 0.921 0.067 0.290 29.41 0.946 0.016 0.963

Table 1. Quantitative analysis of held-out view synthesis. We benchmark our method against state-of-the-art approaches by evaluating
the novel-view rendering and geometric quality on both the dynamic foreground region and the entire scene, across the held-out frames
from input videos. MV-SOM is a multi-view version of Shape-of-Motion [54] that we construct by instantiating four different instances
of single-view shape of motion, and optimize them together. On Panoptic Studio, groundtruth depth for computing the AbsRel metric is
obtained from 27-view optimization of the original Dynamic 3DGS, and for ExoRecon, we project the released point clouds obtained via
SLAM from Aria glasses. When evaluating single-view baselines, SOM [54], we naively aggregate their predictions from the four views
and evaluate this aggregated prediction against the evaluation cameras.
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Figure 4. Qualitative analysis of held-out view synthesis on ExoRecon. We show qualitative results of held-out view synthesis (left) and
a 5◦ deviation from the static camera position at the held-out timestamp (right). As compared to other multi-view baselines, our method
does dramatically better at interpolating the motion of dynamic foreground (left), even from new camera views (right). We posit that
Dynamic 3DGS suffers because of lack of geometric constraints and MV-SOM has duplicate foreground artifacts because of conflicting
depth initialization from the four views.

4.1. Comparison to State-of-the-Art

Evaluation on held-out views. In Tab. 1, we compare
our method to recent dynamic scene reconstruction base-
lines [36, 54, 67], following evaluation protocols from prior
work [54, 62]. Our method beats prior art on both Panoptic
Studio and ExoRecon datasets, when evaluated on held-out
views across photometric (PSNR, SSIM, LPIPS) and geo-
metric error (AbsRel) metrics. Note that when initializing
Dynamic 3DGS [36] with 4 views we find that COLMAP
fails, and so the point cloud initialization for this baseline is
from a 27-view COLMAP optimization.

Interestingly, we find that though the monocular 4D re-
construction method Shape of Motion (SOM) [54] always

fails to output accurate metric depth, it shows incredibly
robustness to a limited camera shift. We hypothesize that
the foundational priors of Shape of Motion allow it to
produce reasonable results in under-constrained scenarios,
while test-time optimization methods, especially ones that
do not always rely on data-driven priors like [36], can more
easily fall into local optima (e.g. those caused by poor ini-
tialization) which are difficult to optimize out of via render-
ing losses alone.

Evaluation on a 45◦ novel-view On Panoptic Studio, we
use the four evaluation cameras to evaluate the predictions
from our method with photometric errors. We also evaluate
the rendered depth against a ‘pseudo-groundtruth’ depth ob-



Method PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑ AbsRel (↓)

SOM 16.73 0.554 0.491 0.287 0.578
Dyn3D-GS 23.31 0.776 0.316 — 0.273
MV-SOM 21.56 0.541 0.433 0.482 0.413
MonoFusion 25.73 0.847 0.158 0.943 0.188

Table 2. Quantitative analysis of 45◦ novel-view synthesis on
Panoptic Studio. We benchmark our method against state-of-
the-art approaches by evaluating both the dynamic foreground re-
gion and the entire scene. Notably, the evaluation is conducted on
novel views where the cameras are at least 45 degree shifted from
all training views. We additionally evaluate the geometric recon-
struction quality with absolute relative (AbsRel) error in rendered
depth.
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Figure 5. Qualitative results of 45◦ novel-view synthesis results
on Panoptic Studio. We show qualitative novel-view synthesis
results of our method compared to baselines on the softball (left)
and tennis (right) sequences. We visualize the groundtruth RGB
image for the 45◦ at the top. Our rendered extreme novel-view
RGB image closely matches ground truth. We find that all other
baselines struggle to generalize to extreme novel views.

tained from the optimization of Dynamic 3DGS [36] from
their 24 training views. We find that all methods achieve
low photometric errors, highlighting the difficulty of learn-
ing plausible dynamic reconstructions from limited view-
points. Despite this, our method outperforms all baselines,
achieving state-of-the-art results on 45◦ novel-view synthe-
sis.

4.2. Ablation Study

We ablate the design decisions in our pipeline in Tab. 3.
Our proposed space-time consistent depth plays a crucial
role in learning accurate scene geometry and appearance
(yielding a 3.4 PSNR improvement, Row 1 vs 3). Next,

Method Lfeat dn T
(b)
0→t ↑PSNR ↑SSIM ↓LPIPS ↑IoU

Baseline ✗ ✗ ✗ 26.19 0.915 0.077 0.60
+ Lfeat ✓ ✗ ✗ 25.39 0.933 0.087 0.63
+ Our depth / no Lfeat ✗ ✓ ✗ 29.55 0.944 0.037 0.73
+ Our depth / Lfeat ✓ ✓ ✗ 29.31 0.941 0.041 0.75
+ Motion bases (Ours) ✓ ✓ ✓ 30.40 0.947 0.037 0.81

Table 3. Ablation study of pipeline components. We ab-
late our choice of feature-metric loss, spacetime consistent depth,
and feature-based motion bases. While the proposed depth and
feature-based motion bases considerably improve 4D reconstruc-
tion (evaluated by photometric errors), we find that our feature loss
helps learn better motion masks (evaluated by IoU).

we find that the feature-metric loss Lfeat =
∥∥∥F̂− F

∥∥∥ pro-
vides a trade-off between learning photometric properties
vs.learning foreground motion and silhouette. Although the
PSNR decreases, we see an increase in mask IoU (Row 1 vs
2 and Row 3 vs 4). Similarly, freezing the color of all Gaus-
sians across frames aids learning the motion mask, as mea-
sured by mask IoU. Finally, our motion bases constructed
from feature-clustering improve overall scene optimization
(final row).

Velocity-based vs. feature-based motion bases In the
monocular setting, we empirically found that both designs
performed equally well. However, in our 4 camera sparse
view setting, we found that feature-based motion bases per-
form much better than velocity-based motion bases. The
reason is that for velocity-based motion bases, we infer
3D velocity by querying the 2D tracking results plus depth
per frame following Shape-of-Motion[54]. Thus, noisy
foreground depth estimates where the estimated depth of
the person flickers between foreground and backward will
negatively influence the quality of velocity-based motion
bases, causing rigid body parts to move erratically. In con-
trast, feature-based motion bases, where features are initial-
ized from more reliable image-level observations, are more
robust to noisy 3D initialization and force semantically-
similar parts to move in similar ways. To validate our
points, in Fig. 11 we use PCA analysis to visualize the in-
ferred features and find that they are consistent not only on
temporal axis but also across cameras.

Effect of different number of motion bases. When the
number of motion bases is not expressive enough (in our
experience when the number of motion bases < 20), there
are often obvious flaws in the reconstruction, such as miss-
ing arms or the two legs joining together into a single leg.
In reality, we do not observe that increasing the number of
motion bases further hurts the performance. Empirically,
the capacity of our design (which is 28 motion bases) can
effectively handle different scene dynamics.
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Figure 6. Qualitative results of 45◦ extreme novel view synthesis results on ExoRecon (1/2). We visualize the rasterized RGB image
and depth map from each method for 4 diverse EgoExo sequences (see supplement for more scenes). Existing monocular methods and
their extension to multi-view produce poor results rendered from a drastically different novel view. MV-SOM improves upon SOM by
optimizing a 4D scene representation with four view constraints, but it still suffers from duplication artifacts. Our method’s careful point
cloud initialization and feature-based motion bases further improve on MV-SOM.
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Figure 7. Qualitative results of 45◦ extreme novel view synthe-
sis results on ExoRecon (2/2). We show qualitative novel-view
synthesis results of our method compared to baselines on chal-
lenging sequence on ExoRecon: highly-dynamic, large scene with
small foreground football (left) and complex, highly-occluded
scene bike repair (right). Notably MonoFusion significantly beats
other baselines in terms of quality.

5. Conclusion

In this work, we address the problem of sparse-view 4D
reconstruction of dynamic scenes. Existing multi-view 4D
reconstruction methods are designed for dense multi-view
setups (e.g. Panoptic Studio). In contrast to prior work, we

cam_0 cam_1 cam_2 cam_3

t_0

t_1

Figure 8. Spatial-Temporal Visualization of feature PCA. We
perform PCA analysis and transform the 32-dim features from
Sec. 3.3 down to 3 dimensions for visualization purposes. We
find that the features are consistent across views and across time.
Notably, when the person turns around between t0 and t1 in ob-
servations from cam1 and cam2, the feature remains robust and
consistent. The semantic consistency of features aids explainabil-
ity, provides a strong visual clue for tracking, and gives confidence
in our feature-guided motion bases.

aim to strike a balance between the ease and informative-
ness of multi-view data capture by reconstructing skilled
human behaviors from four equidistant inward-facing static
cameras. Our key insight is that carefully incorporating pri-
ors, in the form of monocular depth and feature-based mo-
tion clustering, are important to enable plausible and photo-
realistic 4D reconstructions of dynamic scenes. Our empir-
ical analysis shows that we achieve state-of-the-art perfor-
mance on novel space-time synthesis as compared to prior
art for 4D reconstruction, on challenging scenes and object
dynamics.
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MonoFusion: Sparse-View 4D Reconstruction via Monocular Fusion

Supplementary Material

A. Results on Additional Sequences

We provide novel-view synthesis results from additional se-
quences to show the generalization ability among all cate-
gories of EgoExo4D. Our additional results cover basic life
scenarios, such as healthcare, dancing, cooking, music and
bike repair. Specifically, we provide qualitative novel view
rendering results from 5◦ and 45◦ novel views results. We
also include 4D visualizations on the attached website.

B. Training View Renderings

To build confidence in our implementations, we validate ev-
ery baseline we run by verifying that each method looks rea-
sonable at training views. It is worth noticing that in each
iteration of optimization, we sample a batch of frames out
of the video to optimize the overall loss. As the loss is op-
timized as a global minimum averaged over all frames, it is
possible that some artifacts remain for certain frames.

C. Training Details

In this section, we report the learning rate and loss weights
of Gaussians in our optimization process. These hyperpa-
rameters are shared across every scene that we evaluated
on. Specifically, Lsmooth bases enforces smooth motion bases
by penalizing high accelerations in rotations and transla-
tions. Lsmooth tracks promotes smooth object tracks by penal-
izing large accelerations in object positions across frames.
Ldepth grad aligns the gradients of the predicted and ground
truth depth maps to preserve structural details. Lz accel pe-
nalizes high accelerations along the depth axis to reduce jit-
ter in depth estimation. Lscale val constrains the variance of
scale parameters of Gaussians to achieve consistent repre-
sentations.

Table 4. Learning Rates for Foreground (FG), Background (BG),
and Motion Parameters

Parameter FG LR BG LR Motion LR
means 1.6× 10−4 1.6× 10−4 –
opacities 1× 10−2 1× 10−2 –
scales 5× 10−3 1× 10−3 –
quats 1× 10−3 1× 10−3 –
colors 0 1× 10−2 –
feats 1× 10−3 1× 10−3 –
motion coefs 1× 10−3 – –
rots – – 1.6× 10−4

transls – – 1.6× 10−4

Table 5. Loss Weights Configuration

Loss Parameter Weight Loss Parameter Weight

wrgb 7.0 wmask 5.0
wfeat 7.0 wsmooth bases 0.1
wdepth reg 1.0 wsmooth tracks 2.0
wdepth const 0.1 wscale var 0.01
wdepth grad 0.1 wz accel 1.0
wtrack 2.0

D. Alternative design choice

E. Limitations and Future Work
We address two key limitations of our work. First, like
previous methods, we rely heavily on 2D foundation mod-
els to estimate priors (e.g. depth and dynamic masks) for
gradient-based differentiable rendering optimization. Thus,
imprecise priors can harm the downstream rendering pro-
cess. In addition, the current pipeline requires a user prompt
to specify dynamic masks for each moving object [3], which
can be labor-intensive for complex scenes. To solve this,
distilling dynamic masks from foundation models or infer-
ring dynamic masks from image level priors (as in [67])
could be beneficial.

Second, most off-the-shelf feed-forward depth estima-
tion networks are trained on simple scene-level datasets,
with few dynamic movers (e.g. people) in the foreground.
In practice, we observe that the depth of humans in dynamic
scenes is often incorrect when observed from other views.
For example, DUSt3R often estimates the depth of a hu-
man to be the same as the depth of surrounding walls, caus-
ing the human to blend into the background. We believe
that these fundamental problems with the depth predictions
cannot be solved by any alignment in the output space. To
mitigate this issue, we plan to further fine-tune DUSt3R or
MonST3R on existing dynamic human datasets.
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Figure 9. Novel view synthesis results from more video sequences. In each row, we visualize the rasterized RGB image, depth map,
and foreground mask from our method for various diverse scene including music (top), cooking (middle), and healthcare (bottom). We
include results for 5◦ (left) and 45◦ (right) novel view synthesis results. Notably, the rendered RGB and depth maps produce consistent
reconstructions and plausible geometry.
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Figure 10. Training view results. We visualize the rasterized RGB image and depth map from each method for the dancing (left) and bike
repair (right) sequences. All methods are capable of producing reasonable training views and depth maps. It is worth noticing that in each
iteration of optimization, we sample a batch of frames out of the video to optimize the overall loss. As the loss is optimized as a global
minimum averaged over all frames, it is possible that some artifacts remain for certain frames.
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Figure 11. Failure example of SAM-V2. We qualitatively inspect
the SAM-V2 dynamic foreground masks on the kitchen (top) and
bike repair (bottom) scenes. The dynamic mask is highlighted in
purple, and failures in dynamic mask estimation are highlighted
in red circle. We observe that SAM-V2 can miss important body
parts (e.g. the person’s hands) or get confused by the background
(as shown in top row). Long-term occlusion will also lead to track-
ing failure (as shown in bottom row). These failure cases suggest
that dynamic mask tracking in complex scenes remains an open
challenge.

MiRroR(cam3 frame X 
66+   roll_out_cam_1)

Figure 12. Visualization of foreground projection for differ-
ent checkpoints. Here we show the projection by known cameras
and ground-truth foreground masks, using the point cloud from
DUSt3R (top row) and MonST3R (bottom row) for two selected
cameras (each column represents one camera). Notably, although
MonST3R is fine-tuned on temporal frame sequences instead of
multi-view information, MonST3R benefits from the presence of
dynamic foreground movers in its fine-tuning dataset and thus
gives a better foreground result.
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